W

OLD DOMINION

«f C/C++ Short review
A. Godunov

Structure of a program

Variables, Data Types, and Constants
Operators

Basic Input/Output

Control structures

Functions

Arrays

Input/Output with files

Pointers

©RND A WN

Basics of C/C++ for computational physics

= Structure of a program

= Variables, Data Types, and Constants
= Operators

= Basic Input/Output

= Control Structures

= Functions

= Arrays

= Input/Output with files

= Pointers

= Classes

Reference books: so many!

VC++ =

DEfTEL

HOW TO PROGRAM

ety
PAUL DEITEL teNenCold
FARVEY BEITEL St

| Chba

Santey B Lipproan
JosdoLajie
BubanE Moo

Have a good reference book for the version of C/C++ you are using.

Refer to this book frequently to be sure you are aware of the rich
collection of C/C++ features and you are using these features correctly.

Books with programming tips

Some books* have very practical advice on
= Good programming practices

= Common programming errors

= Performance tips

= Software engineering observations

= Testing and debugging tips

* C++ how to program, Deitel & Deitel have hundreds of valuable tips.

Part 1: Structure of a program

A simple program

// Simple program
#include <iostream>
using namespace std;

int main()
{
int x, vy;
X = 2;
y =X+ 4
cout <<" x = "<<x<<" x + 4 = "<y << endl;
return 9;
3
Output :

x=2 x+4=6

More complex structure involves programmer-defined functions, control
statements, classes, communication with files, ...

CI/C++ is a free format language

= The compiler ignores ALL spaces, tabs,
and new-line characters (also called “white spaces”)

= The compiler recognizes “white spaces” only inside a string.
= Using white spaces allows to better visualize a program structure
(e.g. extra indentation inside if statements, for loops, etc.) .

Part 2: Variables, Data Types, and Constants

Common structure of a program

1. Comments

2. Header files

3. Declare variables

4. Declare constants

5. Read initial data

6. Open files

7. CALCULATIONS (include calling other functions)
8. Write results

9. Closing

10. Stop

* Steps 5-9 may call other modules

Variables, Data Types and Constants

= |dentifiers (names of variables)
= Fundamental data types

= Declaration of variables

= Global and local variables

= Initialization of variables

= Constants

Variables and Identifiers

Variable is a location in the computer’s memory where a value can be
stored for use by a program.

A variable name is any valid identifier.

An identifier is a series of characters consisting of letters, digits, and
uderscore (_) that does not begin with a digit.

C++ is case sensitive — uppercase and lowercase letters are
different.

Examples: abc, Velocity_i, Force_12

10

11

Identifiers: reserved key words

These keywords must not be used as identifiers!

C and C++ keywords

auto break case char
continue default do double
enum extern float for

if int long register
short signed sizeof static
switch typedef union unsigned
volatile while

const
else
goto
return
struct

void

12

Identifiers: reserved key words Il

C++ only keywords

asm bool catch class const_cast
delete dynamic_cast explicit false friend
inline mutable namespace new operator
private protected public reinterpret_cast
static_cast template this throw true
try typeid typename using virtual
wchar_t
13
Range of data types in C++
name range bytes
short int signed: -32768 to 32767 2
unsigned: 0 to 65535
int -2,147,483,648 to 2,147,483,647 4
unsigned: 0 to 4,294,967,295
bool true or false 1
float 3.4e +/- 38 (7 digits) 4
double 1.7e +/- 308 (15 digits) 8
long double 1.7e +/- 308 (15 digits) 8*

* Depends on a system

Variable Data Types

Each variable has a name, a type, a size and a value.
Fundamental data types in C++

Name Description Bytes
char Character or small integer 1
short int Short Integer 2
int Integer 4
long int Long integer 4*
Long long int Long integer 8
bool Boolean 1
float Floating point number 4
double Double precision floating point 8
long double Long double precision 8*
wchar_t Wide character 2
* Depends on a system

14

C++ and complex numbers

C++, unlike Fortran, does not have complex numbers as a part of the
language. However, there are libraries

#include <complex>

// Program illustrating the use of real() and
// imag() function

#include <iostream>

#include <complex>

using namespace std;

// main part

int main()

// defines the complex number: (10 + 2i)

std: :complex<double> mycomplex(10.0, 12.0);

// prints the real part using the real function
cout << "Real: " << real(mycomplex) << endl;

cout << "Imaginary: " << imag(mycomplex) << endl;
return 0;

)

OUTPUT

Real: 10

15

Imaginary: 12

Declaration of variables

All variables must be declared with a name and a data type before they
can be used by a program.

16

//declaration of variables
#include <iostream>

using namespace std;

int main()

double a, speed, force_12;
int i, n;

. some operators ...
return 0;

Global and local variables

A global variable is a variable declared in the main body of the source
code, outside all functions.

Global variables can be referred from anywhere in the code, even inside
functions

A local variable is one declared within the body of a function or a block.

The scope of local variables is limited to the block enclosed in braces {}
where they are declared.

17

18

Example

// test on global and local variables
#include <iostream>

using namespace std;

void f12(void);

int nglobal = 1;

Int main()

cout << "main 1: nglobal = " << nglobal <<endl;
nglobal = 2;

cout << "main 2: nglobal = " << nglobal <<endl;
£1203;

cout << "main 3: nglobal = " <

N

nglobal <<endl;
3
void £12()
{
cout << "f12 : nglobal = " <

nglobal = 3;
b

N

nglobal <<endl;

main 1: nglobal
main 2: nglobal
f12 : nglobal
main 3: nglobal

o
[CENENEN

19

Constants

Declared constants (most common for C++)
const type identifier = initial_value ;

Constant variable can not be modified thereafter.
const double pi = 3.1415926;

Define constants (most common for C)
#define identifier value
#define PI 3.14159265

21

Part 3: Operators

Initialization of variables

When declaring a regular local variable, its value is by default
undetermined.

Initialization 1:
type identifier = initial_value;
float sum = 0.0;

Initialization 2:
type identifier (initial_value) ;
float sum (0.0);

Initialization 3:
identifier = initial value ;

sum = 0.0;

20

Example

//declaration of variables (example)

#include <iostream>

using namespace std;

#define PI 3.1415926

const float Ry = 13.6058;

int main()

{
float a, speed, force_12;
int i, n;
float angle = 45.0;

. some operators ...

return 0;

22

23

Operators

= Assignment (=)

= Arithmetic operators (+, -, *, /, %)

= Compound assignation (+=, -=, *=, /=, %=)
= Increment and decrement (++, --)

= Relational and equality operators (==, !=,
>=, <=)

= Logical operators (!, &%, ||)
= Conditional operator (?)
= Comma operator (,)

= Precedence of operators

24

Assignment operator (=)

The assignment operator assigns a value to a variable.

// operator (=)
#include <iostream>
using namespace std;
int main ()
{
int a, b;
a = 12;
b= a;
cout << " a =" < a
<< " b =" << b <<endl;
return 0;
3

25

Precedence of arithmetic operators

Operator

0
1%

Operation
Parentheses
Multiplication
Division
Modulus
Addition

Subtraction

Order

Evaluated first
Evaluated second
(if more than one
then left-to-right)
Evaluated last

(if more than one

then left-to-right)

Example: a + b*c; step 1: b*c step 2: a + the result from step 1

Example: (atb)*c; step 1:a+b step 2: c*(result from step 1)

27

The increment/decrement operators

Operator called C++

Arr pre increment ++a (add 1)

Arr post increment a++

=o pre decrement --a (subtract 1)
=o post decrement a—

x = x+1; is the same as x++;

It seems there is not much value to use ++ or --.

Arithmetic operators

There are five arithmetic operators

Operator Symbol C++ example
1. addition + f+7

2. subtraction - p-c

3. multiplication * b *k

4. division / x/ly

5. modulus % r%s

26

Arithmetic assignment operators

There are five arithmetic assignment operators

Operator C++ explanation
+= a +=7 a=a+7
-= b -=4 b=b -4
*= @ ¥= B @ =@ <5
/= d /=3 d=d/3
%= e %= 9 e=¢e%9

However, you may find it’s more explanatory to write
a=a+7 than a+=7!

28

Equality and relational operators

Equality operators in decision making

C++ example meaning
= = X ==y x is equal to y
|= x I= x is not equal to y

Relational operators in decision making

C++ example meaning

> > X >y x 1s greater than y

< < X <y x is less than y
>= X >=y x is greater or equal to y
<= X <=y x is less than or equal to y

29

30

Logical operators

C++ provides logical operators that are used to form complex
conditions by combining simple conditions.

Operator Symbols C++ example
and && if (i==1 && j>=10)
or Il if (speed>=10.0 || t <=2.0)

31

Part 4: Basic Input/Output

33

Basic Input/Output

cin is an object of the istream class and is connected to the standard
input device (normally the keyboard)

cout is an object of the ostream class and is connected to the standard
output device (normally the screen)

// output

#include <iostream>
using namespace std;
int main ()

int a;

a=2;
cout << " a = " << a << endl;

return 0;

b
OUTPUT
a=2

Conditional operator (?)

The conditional operator evaluates an expression returning a value if that

expression is true and a different one if the expression is evaluated as
false. Its format

condition ? result1 : result2

// conditional operator
#include <iostream>
using namespace std;
int main ()

{

int a,b,c;
a=2;
b=7;
c = (a>) ? a : b;
cout << " ¢ = " << ¢ << endl;
return 0;

3

c=7

32
Input/Output

The C++ libraries provide an extensive set of input/output capabilities.
C++ I/O occurs in stream of bytes.

lostream Library header files

<iostream> contains cin, cout, cerr, clog.
<iomanip> information for formatting
<fstream> for file processing

34

35

Example

// Input and output
#include <iostream>
using namespace std;
int main ()

int a, b;
cout << " enter two integers:";
cin >> a >> b;

cout << " a =" << a
<< "b =" << Db << endl;
return 9;
3
OUTPUT
enter two integers:2 4
a=2b=4

36

Elements of formatting

setw set the field width (positions for input/output)
setprecision control the precision of float-point numbers

setiosflags(ios::fixed | ios::showpoint) sets fixed point output with a
decimal point

cout << setw(5)<< n

<< setw(10)<< setprecision(4)

<< setiosflags(ios::fixed | ios::showpoint)
<< t <<endl;

Output for n = 2 and t = 4.0
2 4.0000

37

Example

cout.setf(ios::fixed | ios::showpoint);
cout.width(10);
cout.precision(5);

cout << "radius = " << radius << endl;
cout << "diameter = " << diameter<< endl;
cout << "circumf. = " << circumf << endl;
cout << "area = " << area << endl;
OUTPUT

radius = 3.00000

diameter = 6.00000
circumf. = 18.84956
area = 28.27433

39

Control Structures

Normally, statements in a program are executed one after another in
the order in which they are written. This is called sequential
execution.

The transfer of control statements enable the programmer to specify
that the next statement to be executed may be other than the next
one in the sequence.

41

Some format state flags

ios :: showpoint Specify that floating-point numbers should be output
with a decimal

ios::fixed Specify output of a floating-point value in fixed-point notation
with a specific number of digits to the right of the decimal point.

ios::scientific Specify output of a floating-point value in scientific
notation.

ios::left Left justify output in a field.

ios::right Right justify output in a field.

38

Part 5: Control structures

Sequence, Selection, and Repetition
Sequence Selection : Repetition
Q if structure Q if/else structure O while structure
| | (single selection) | (double selection) | | —
Yt Yt Yt J_l
<> < R m—
f f
tg é) do/while structure|

switch structure !
(multiple selection) [')
t

<j—:k ~Break}—>
. f
\l/Lnj »{breakl—»|
: f

42

Three types of selection structures:

if single-selection structure
if/else double-selection structure
switch multiple-selection structure

43
if/lelse - double-selection structure
The if/else selection structure allows the programmer to specify that a
different action is to be performed when the condition is true than when the
condition is false.
if/else sfructure
(double selection)
f t
I
|
|
if (grade >=60)
cout << "passed";
else
cout << "failed";
45
Three types of repetition structures:
1. while
2. do/while
3. for
a7

O if structure
(single selection)
t

if - single-selection structure

The if selection structure performs an indicated action only when the
condition is true; otherwise the condition is skipped

if (grade >=60)
cout << "passed";

if (grade >=60) {
n=n+1;
cout << "passed";}

44

O switch structure
(multiple selection)
t

switch - multiple-selection structure

switch (x) {

case 1:

cout << "x is 1";
break;

case 2:

cout << "x is 2";
break;

default:

cout << "value of x
unknown" ;

46

while sfructure

The while repetition structure

A repetition structure allows the programmer to specify an action is to
be repeated while some condition remains true

int n = 2;
while (n <= 100)
{n=2*n;
cout < n;}

48

The do/while repetition structure

The loop-continuation condition is not executed until after the action is
performed at least once .

do/while structure do{
Q statement
} while (condition);

int i = 0;
do {
cout << i;
i=1+10;
} while (i <=100);

The for repetition structure

The for repetition structure handles all the details of counter-controlled
repetition.

for structure for (i=0; i <=5; i=it+l)

.. actions ...

49

The break and continue statements

The break and continue statements alter the flow of the control.

The break statement, when executed in a while, for, do/while, or switch
structure, causes immediate exit from that structure

The continue statement, when executed in a while, for, or do/while
structure, skips the remaining statements in the body of the structure,
and proceeds with the next iteration.

50

// using the break statement
#include <iostream>

using namespace std;

int main ()

€
int n;

for (n = 1; n <=10; n = n+l)

if (n == 5)
break;
cout << n << " "y

cout << "\nBroke out of loop at n of " << n << endl;
return 0;

3

OUTPUT
1 2 3 4
Broke out of loop at n of 5

51

52

// using the continue statement
#include <iostream>
using namespace std;
int main()
{
for (int x=1; x<=10; x++)
{
if (x == 5)
{continue;}
cout << x << " "y

cout << "\nUsed continue to skip printing 5" << endl;
return 0;

b

OUTPUT

1234678910

Used continue to skip printing 5

Good practice:

The while structure is sufficient to provide any form of repetition.

53

54

Part 6: Functions

Functions

The best way to develop and maintain a large program is to construct
it from smaller parts (modules).

Modules in C++ are called functions and classes.

C++ standard library has many useful functions.

Functions written by a programmer are programmer-defined-functions.

Math Library Functions

Math library functions allows to perform most common mathematical
calculations

Some math library functions:

56

cos(x) sin(x) tan(x) sqrt(x)
exp(x) log(x) logl0(x) pow(x,y)
fabs(x) floor(x) fmod(x,Vy) ceil(x)
examples

old style

#include <iostream.h>
#include <fstream.h>
#include <iomanip.h>
#include <math.h>

new style (note — add a line)

#include <iostream>
#include <fstream>
#include <iomanip>
#include <cmath>
using namespace std;

Header files

Each standard library has a corresponding header file containing the
function prototypes for all functions in that library and definitions of
various types and constants

Examples

old styles and new styles

<math.h> <cmath> math library
<iostream.h> <iostream> input and output
<fstream.h> <fstream> read and write (disk)
<stdlib.h> <cstdlib> utility functions

... and many more

58

Functions prototypes

A function-prototype tells the compiler the name of the function, the type
of data returned by the function, the number of parameters, the type of
parameters, and the order of parameters.

Function prototype:
value-type function-name (par-type1, par-type2, ...)

The compiler uses function prototypes to validate function calls.

60

10

Functions definitions

Function definition:
return-value-type function-name(parameter-list)

{

declarations and statements (function body)

}

A type must be listed explicitly for each parameter in the parameter-list
of a function

All variables declared in function definitions are local variables — they
are known only in the function.

//example: a programmer-defined function
#include <iostream>
using namespace std;
int square(int); // function prototype
int main()
{

for (int x = 1; x <= 10; x++)

cout << square(x) << " "

cout << endl;

return 0;

// Function definition
int square(int y)

int result;
result =y * y;
return result;

OUTPUT
1 4 9 16 25 36 49 64 81 100

61

62

Functions definitions

If a function does not receive any values parameter-list is void or left empty. If
a function does not return any value, then return-value-type of that function is
void both in the function prototype and function definition

//example: a "void" case

#include <iostream>

using namespace std;

void out2(void); // function prototype
int main()

out2();
return 9;

// Function definition
void out2(void)

cout << "output from function out2" << endl
return;

OUTPUT
output from function out2

References and Reference Parameters

There are two ways to invoke functions:

call-by-value — a copy of the argument’s value is made and passed to
the called function. Changes to the copy do not affect the original
variable’s value in the caller. (This this the common way)

call-by-reference — the caller gives the called function the ability to
directly access the caller’s data, and to modify that data if the called
function so chooses.

63

64

call-by-reference
A reference parameter is an alias for the corresponding argument.
To indicate that place & after the parameter's type in the function
prototype, and the function definition.

// call-by-reference
#include <iostream>

using namespace std;
void £12(int&, int&);
int main()

{
int a, b;
a = 12;
b = a;
cout << "a = "<< a << " b =" << b <<endl;
f12(a, b);
cout << "a = "<< a << " b =" << b <<endl;
return 0;
3
void f£12(int& outl, int& out2) OUTPUT
¢ outl = outl¥*2.0; a=12 b=12
out2 = outl +3; a=24 b=27
>

Default Arguments

Function calls may pass a particular value of an argument. The

programmer can specify that such an argument is a default argument with

a default value.

When a default argument is omitted in a function call, the default value is

automatically inserted by the compiler and passed in the call.

Default argument must be the rightmost arguments in a function’s
parameter list.

Default arguments normally are specified in the prototype

int function2(int a=2);

65

66

11

Part 7: Arrays

67

Arrays in C/C++

Most of us were not taught by our mothers to count on our fingers
starting with the thumb as zero!

zero subscripts when dealing with matrices.

F.S. Acton “Real Computing made real”

Accordingly, you will probably make fewer n - 1 errors if you do not use

69

// Initialize array a and fill with numbers
#include <iostream>

#include <iomanip>

using namespace std;

int main()

const int arraySize = 5;
int i, a[arraySize];

(i=0; i< arraySize; i = i + 1)
al i1 =2*%i;
cout <<"Element'<<setw(12)<<"Value"<< endl;

for (i = @; i < arraySize; i =i + 1)
cout <<setw(7)<<i<<setw(12)<<a[i J]<<endl;

Arrays
An array is a consecutive group of memory locations that all have the
same name and the same type.

To refer to a particular location or element in the array, we specify the
name of the array and the position number of the particular element in
the array.

The first element in every array is the 0t element.

68

Declaring Arrays

Arrays occupy space in memory. The programmer specifies the type of
elements and the number of elements required, so that the compiler
may reserve the appropriate amount of memory.

Example: reserve 12 elements for integer array c

[int c[12]; |

Example: declaration and initialization of an array n

[int n[6]=(2, 18, 33, 5, 21, 39}; |

70

return 0;

b

OUTPUT

Element Value
(] (]
1 2
2 4
3 6
4 8

71

Multidimensional Arrays

Example: A 2 dimensional table 3 (rows) by 5 (columns) (15 elements)

[int toys[31[51; |

O |w

w| o>

a|lN| oo
SV NN E
YIS NN

\Hm

toys [2] [3] = 21;

72

12

Passing Arrays to Functions

To pass an array argument to a function, specify the name of the array
without any brackets.

Example for array time and function speed.

float array time[24];

: speed(time, 24);

C++ passes arrays to functions using simulated call-by-reference — the
called function can modify the element values in the caller’s original

arrays.

// Passing Arrays to Functions
#include <iostream>

using namespace std;

void print_array (int [], int);
int main ()

{
int a[] = {1, 2, 3, 43};
int b[] = {5, 4, 3, 2, 1};
print_array (a,4);
print_array (b,5);
return 0;

3

void print_array (int arg[], int length)

for (int n=0; n<length; n=n+1)
cout << arg[n] << " ";
cout << "\n";

(G}
ENENR|
W W C
NS

73

Static and Automatic Arrays

Arrays that are declared static are initialized when the program is

loaded. If a static array is not explicitly initialized, that array is
initialized to zero by the compiler.

In functions: static arrays contain the values stored during the previous
function call. For automatic arrays it does not happen.

static int array_s[10];
int array_a[10];

75

Part 8: Input/Output with files

77

74

// Static and Dynamic arrays
#include <iostream>

using namespace std;

void print_array (int [], int);
int main ()

{
int al5];
primt_array (a,5);
print_array (b,5);
return 0;

void print_array (int arg[], int length)

for (int n=0; n<length; n=n+1)
cout << arg[n] << " ";
cout << "\n";

2147340288 4328756 1 256 1
00000

76

File processing (open and write)

To perform file processing in C++, the header files <iostream> and
<fstream> must be included.

Open a file with a name “file1.dat” and write to it

#include <iostream>

#include <fstream>

using namespace std;

ofstream outfile (“filel.dat”, ios::out);

outfile << a << endl;

78

13

File processing (more)

Example 2 (also works)

Open a file with a name “file2.dat” and write to it

#include <iostream>
#include <fstream>
using namespace std;
ofstream outfile;

outfile.open(“file2.dat”);

outfile << a << endl;

File processing (open and read)

Open a file with a name “input.dat” and read from it

#include <iostream>

#include <fstream>

using namespace std;

ifstream inputfile (“input.dat”, ios::in);

inputfile >> a;

To close a file

‘ inputfile.close();

79
File open modes
Mode Description
ios::app Write all output to the end
ios:in Open a file for input
ios::out Open a file for output
ios::nocreate If the file does not exist,
the open operation fails
ios::noreplace If the file exists, the open
operation fails
81

Pointers

Pointers are one of the most powerful features of the C++
programming language.

Pointers are among the most difficult capabilities to master.

Pointers enable to simulate call by reference, and to create and
manipulate dynamic data structures.

83

80
Part 9: Pointers
82
Declarations
Pointer variables contain memory address as their values.
Declaration:
int *iPointer, 1i;
float *xPointer, x;
double *zpntr;
84

14

Pointer operations

Important: & is address operator that returns the address of its operand

int y = 5;
int *yptr;

the statement | VPET = &y;
assigns the address of the variable y to pointer yptr

Now the statement ‘COUt << *yptr << endl; ‘

print the value of y, namely 5.

And the statement ‘*yptr = 83

would assign 9 to y.

// Cube a variable using call-by-reference

// with a pointer argument

#include <iostream>

using namespace std;

void cubeByReference(int *); // prototype
int main()

int number = 5;
cout << "The side is " << number;
cubeByReference(&number);

cout <<"\nThe volume is "<< number << endl;
return 0;
void cubeByReference(int *nPtr)

*nPtr = *nPtr * *nPtr * *nPtr;//cube to main

b

The side is 5
The volume is 125

85

86

Function pointers

A pointer to a function contains the address of the function in memory.

A function name is the starting address in memory of the code that
performs the function’s task

Pointers to functions can be processed to functions, returned to
functions, stored in arrays, and assigned to other function pointers.

//example: using function pointers

#include <iostream>

using namespace std;

float av(float, float, float(*)(float));

float x2(float);

int main()

{ float x2average, xmin, xmax;
xmin = 2.0;
xmax = 4.0;
X2average = av(xmin, xmax,
cout << "average = " <<
return 0;

2);
Verage << endl;

3

float av(fl a, float b, float (*f)(float))

b)+f(a))/2.0;

float x2 (float x)
{ return x*x;3}

‘average =10 ‘

87

Part 10: Examples

89

88

// Example 1: calculate values of a function
// and write to a file

#include <iostream>

#include <fstream>

#include <iomanip>

#include <cmath>

using namespace std;

double f(double); //function prototype

int main()

const double pi=3.1415926;
double a, b, step, x, y;

int i, n;

ofstream out2disk; //output to out2disk
a = 0.0; //left endpoint

b = 2.0%pi; //right endpoint
n=12; //number of points

see the next slide ...

90

15

step = (b-a)/(n-1);

out2disk.open ("table@l.dat"); // Function £(x)
quEZdisk <" x"<<" f(x)"<< endl; double f(double x)
=1

while (i <= n) ¢ double y;

{x = a + step*(i-1); y = sin(x);

y = £(x); return y;

out2disk << setw(12) << setprecision(5) 3

<< setiosflags(ios::fixed|ios::showpoint)
<< x << setw(12) << setprecision(5)
<< setiosflags(ios::fixed|ios::showpoint)
<< y <<endl;

30 =g
3

return 0;

00000 (]
57120 (]
14240 (]
71360 (]
28479 (]
85599 (]
42719 -0.28173
-0
-0
-0
-0
-0

99839
56959
14079
71199
28319

see the next slide ...

-
QAUTUAWUWNNRLRLRO®X

91 92

Examples

Many examples can be found on
https://ww2.odu.edu/~agodunov/book/programs.html
Programs (C/C++)

cice+ programs

Setof programs
 Simple programs: quadratic equation ax"2 + bx + ¢ = 0
o Fibonacei numbers Fibonace.c

e e Part 11: Running C++ on macOS

o Single rootof f(x)=0: Using & metnods in one place
o Mulple roots o fq=0: Brute force method

3 method
o Inerpolation: Linear nterpolation
o Interpolation: Lagrange n-paint interpolatio (and example)
Interpolaton: Spline iterpolaton (and example)
o Inegration of (<) on [ab}: Trapesoid rle
o Inegraiion o (<) on [ab}: Smpson's ule
o Inegration of (<) on [ab]: Newton-Coles rule (and example)
o Inegration. Three methods:trapezoid, Simpson, Quanch (Integrai3N)
o tegration
o tegration o {x1.x2) using Newlon-Cotos rus tvics.

D integration using Monte-Carlo method (code and data)
Ordinary Diferentil Equations: firstorder ODE (uler, modified Euler, 4th order Runge-Kuta)

o Ordinary Diferential Equations: second ordr ODE (Euler, modified Euler, 4th ordor Runge-Kutta)

o Ordinary Dif systom of N fist. Runge-Kuta)

enerating uniform random numbers random1 cop
o Testing a uniform random generator random2.cpp.

9

o Monte Carl integration 1D by mean value mc.int1.cpp

o Integration of a function using Simpson's rle, Newton-
‘quanc.cpp, me_int1.cpp,

o Or all four methods in one file mc_integrak.cpp,
. e me_int_nd.cop,

93 94

Using Xcode on macOS Using Xcode on macOS

1. Download and install Xcode \ 4. Choose options: Project name, language, ...

2. Launch Xcode and double click on Welcome to Xcode
“Create a new Xcode project” '

Create a new Xcode project
Greato an a9p for iPhone, 7ad, Mac, Appla Watch, o Apple TV,

[Seenaproiector e
Open an exsting prjector fle onyour M.

3. Choose “Command line tool” Gobsres i e . o o y
for macOS -
& o & © [
((((((- | i et

95 96

ece m

Using Xcode on macOS

= = 5 a

7.

6. The view of your project with Xcode

Py g p—— PR — +

Compile and rune you code by clicking here
(the result is on the next slide ...)

Using Xcode on macOS

The result of calculations in this window

97

Using command line on macOS

1.

2.

Launch the terminal application (one of macOS tools)

Navigate to your file you want to compile and run using command
Is shows lists all files in the directory

cd change the current working directory to a specific folder

e.g. cd Project2

Run the compiler as

g++ -0 a.out project2.cpp

note: a.out is the name of the executable file and project2.cpp is
the C++ file (you can compile more than one file)

Type
.Ja.out
to run the executable file

99

98

Using command line on macOS
For editing .cpp files you can use

« Xcode editor

« TextEdit

« or any other editor

100

17

