
1

Fourier Series and Transform
A. Godunov

1. Introductions
2. Fourier series and Fourier transform (brief review)
3. The Discrete Fourier Transform (DFT)
4. The Fast Fourier Transform (FFT)
5. Filtering noisy signals

1

Part 1:

Introductions

2

Familiar equations

Fourier series

𝑓 𝑓 = 𝑎! + %
"#$

%

𝑎" cos(𝑛𝑥) + 𝑏" sin(𝑛𝑥)

𝑎& =
1
𝜋
2
'(

(

𝑓 𝑓 cos 𝑘𝑥 𝑑𝑥 	 (𝑘 = 0, 1, 2, …)

𝑏& =
1
𝜋
2
'(

(

𝑓 𝑓 sin 𝑘𝑥 𝑑𝑥 	 (𝑘 = 1, 2, …)

3

3

Familiar equations

Fourier transform:

𝐹 𝜔 =
1

2𝜋
2
'%

%

𝑓(𝑥)𝑒)*+ 𝑑𝑥

𝑓 𝑥 =
1
2𝜋

2
'%

%

𝐹(𝜔)𝑒')*+ 𝑑𝜔

4

4

Three important parts

1. Why it’s so important?

2. Understanding Fourier series and Fourier Transform

3. Implementation

5

5

Jean-Baptiste Joseph Fourier (1768 –1830)

Jean-Baptiste Joseph Fourier was a French mathematician and
physicist born in Auxerre and best known for initiating the investigation
of Fourier series, which eventually developed into Fourier analysis.

He also made significant contributions to the study of heat transfer and
vibrations.

His work has had a profound impact on many fields, including physics,
engineering, and mathematics.

6

6

2

What is so special about it?

Fourier analysis is a powerful mathematical tool widely used in various
fields of science and engineering to analyze and process signals, and
functions.

It involves decomposing a complex signal into simpler components,
typically represented as a sum of sinusoids (sines and cosines) waves
with different frequencies, amplitudes, and phases.

This decomposition is extremely useful for identifying and isolating the
frequency content within a signal.

7

7

Physics and Mathematics

• Fourier analysis describes the relationship between time-domain
and frequency-domain information, helping physicists understand
wave-particle behavior.

• It is also used in analyzing vibrations, acoustics, and optical
phenomena, which are inherently periodic or wave-like.

• Solving ODE and PDE

Example: In optics, the Fourier transform explains how diffraction
patterns arise from the physical structure of objects.

8

8

Physics (example)

9

9

Application: Signal Processing

• Frequency Decomposition: Fourier analysis helps break down
signals into constituent frequencies, making it easier to analyze
specific components.

• Noise Reduction: By filtering out unwanted frequencies (like high-
frequency noise), Fourier analysis can help clean up signals.

• Compression: Techniques like JPEG and MP3 compression rely on
Fourier analysis to represent data in a more compact form.

Example: In audio processing, the Fourier transform helps equalize or
remove noise by filtering certain frequency bands.

10

10

Application: Image Processing

• Fourier transforms can be applied to images to emphasize or
suppress certain frequency components, aiding in tasks like edge
detection, pattern recognition, and image filtering.

• In digital imaging, the analysis can help reduce blurring and sharpen
images by filtering out unwanted frequencies.

Example: Medical imaging (e.g., MRI, CT scans), heavily relies on the
Fourier transform in its image processing.

11

11

Communication Systems

• In wireless communication and network systems, Fourier analysis
aids in understanding how signals propagate, interact, and overlap.

• Modulation and demodulation processes in radio, television, and
digital communication depend on Fourier concepts.

Example: Fourier transform is used in designing antennas and
analyzing their frequency response.

12

12

3

Mechanical and Civil Engineering

• Vibration Analysis: Identifies natural frequencies of structures and
machines to prevent resonance and optimize performance.

• Structural Health Monitoring: Detects changes in a structure by
analyzing frequency shifts caused by damage or wear.

Example: In bridge engineering, Fourier analysis identifies vibration
frequencies to assess structural integrity.

13

13

Medical and Biological Sciences

• Medical Imaging: MRI and CT use Fourier transform to reconstruct
spatial images from frequency-domain data.

• Neuroscience: Analyzes brain activity by decomposing EEG or fMRI
signals into frequency components.

• Bioinformatics: Examines periodic patterns in DNA or protein
sequences.

Example: In EEG analysis, the Fourier transform identifies the
frequency bands associated with different brain states (e.g., sleep or
attention).

14

14

How Fourier Analysis Works

The most common forms of Fourier analysis include:

• Fourier Series: Used for periodic signals, breaking them down into
sines and cosines.

• Fourier Transform (FT): Extends this analysis to non-periodic
signals.

• Discrete Fourier Transform (DFT): Applicable in digital settings, like
digital signal processing.

• Fast Fourier Transform (FFT): A computationally efficient way to
perform DFT, crucial for real-time applications.

15

15

Our life without Fourier Analysis

Without the Fourier transform, modern life would look vastly different,
as it underpins much of the technology and scientific understanding we
rely on daily

• Communication and media: no internet or cell phones, poor-quality
audio and video …

• Healthcare: no MRI or CT scans, ultrasound and EEG analysis
would be less effective

• Science and engineering: slower scientific progress, technologies
like GPS, and sonar would be rudimentary

• Entertainment: no advanced animations, no streaming platforms -
data compression needed for Netflix, YouTube, etc., would not work

• …

16

16

Part 2A:

Fourier Series (brief review)

17

Reference

see “Pragmatic Mathematics for Scientists and Engineers” by
Alexander Godunov and John A. Adam, World Scientific (2024)

Chapter 12 “Fourier series and transform”, Sections 7.1-7.3

18

18

4

Part 2B:

Fourier Transform (brief review)

19

Reference

see “Pragmatic Mathematics for Scientists and Engineers” by
Alexander Godunov and John A. Adam, World Scientific (2024)

Chapter 12 “Fourier series and transform”, Section 7.4

20

20

Part 3:

Calculating Fourier series

21

Fourier series

Calculating a Fourier series involves determining the coefficients
𝑎! , 𝑎" , 𝑏" that define the series.

𝑓 𝑓 = 𝑎! + %
"#$

%

𝑎" cos(𝑛𝑥) + 𝑏" sin(𝑛𝑥)

𝑎& =
1
𝜋
2
'(

(

𝑓 𝑓 cos 𝑘𝑥 𝑑𝑥 	 (𝑘 = 0, 1, 2, …)

𝑏& =
1
𝜋
2
'(

(

𝑓 𝑓 sin 𝑘𝑥 𝑑𝑥 	 (𝑘 = 1, 2, …)

22

22

Brief outline

1. Analytical Method: This involves directly applying the Fourier series
formulas through integration

2. Numerical Integration: when analytical integration is too complex,
numerical methods can estimate the coefficients.
One needs to be very careful with oscillating functions.

3. Computational Methods (Using Software) : Tools such as MATLAB,
Mathematica, Python (with NumPy and SciPy), C++, FORTRAN
(with general and special libraries) can calculate Fourier series
coefficients efficiently, especially for complex or numerical
problems.

23

23

Example

Extension of 𝑓(𝑥) = 𝑥, 	as a periodic function with a period of 2𝜋 (solid
line), the Fourier series with three terms (dotted line).

24

24

5

Example (cont.)

Extension of 𝑓(𝑥) = 𝑥, 	as a periodic function with a period of 2𝜋 into the
Fourier series with various number of terms

25

-4 -3 -2 -1 0 1 2 3 4
x

-2

0

2

4

6

8

10

f(x
)

Fourier Series Approximation with N = 1

Original Function
Fourier Series Approximation

-4 -3 -2 -1 0 1 2 3 4
x

0

1

2

3

4

5

6

7

8

9

10
f(x

)

Fourier Series Approximation with N = 10

Original Function
Fourier Series Approximation

25

Example

Extension of 𝑓(𝑥) = 𝑥	as a periodic function with a period of 2𝜋 (solid line),
the Fourier series with six terms (dotted line).

26

26

Example (cont.)

Extension of 𝑓(𝑥) = 𝑥	as a periodic function with a period of 2𝜋 into the
Fourier series with various number of terms

27

-4 -3 -2 -1 0 1 2 3 4
x

-4

-3

-2

-1

0

1

2

3

4

f(x
)

Fourier Series Approximation with N = 2

Original Function
Fourier Series Approximation

-4 -3 -2 -1 0 1 2 3 4
x

-4

-3

-2

-1

0

1

2

3

4

f(x
)

Fourier Series Approximation with N = 10

Original Function
Fourier Series Approximation

27

Example (cont.)

Extension of 𝑓(𝑥) = 𝑥	as a periodic function with a period of 2𝜋 into the
Fourier series with various number of terms

28

-4 -3 -2 -1 0 1 2 3 4
x

-4

-3

-2

-1

0

1

2

3

4

f(x
)

Fourier Series Approximation with N = 100

Original Function
Fourier Series Approximation

-3.5 -3 -2.5 -2
x

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

f(x
)

Fourier Series Approximation with N = 100

Original Function
Fourier Series Approximation

28

Example

Extension of step function	as a periodic function with a period of 2𝜋 (solid
line), the Fourier series with six terms (dotted line).

29

29

Example (cont.)

Extension of the step function	as a periodic function with a period of 2𝜋
into the Fourier series with various number of terms

30

-4 -3 -2 -1 0 1 2 3 4
x

-1.5

-1

-0.5

0

0.5

1

1.5

f(x
)

Fourier Series Approximation with N = 3

Original Function
Fourier Series Approximation

-4 -3 -2 -1 0 1 2 3 4
x

-1.5

-1

-0.5

0

0.5

1

1.5

f(x
)

Fourier Series Approximation with N = 10

Original Function
Fourier Series Approximation

30

6

Example (cont.)

Extension of the step function	as a periodic function with a period of 2𝜋
into the Fourier series with various number of terms

31

-4 -3 -2 -1 0 1 2 3 4
x

-1.5

-1

-0.5

0

0.5

1

1.5

f(x
)

Fourier Series Approximation with N = 1000

Original Function
Fourier Series Approximation

-0.4 -0.2 0 0.2 0.4 0.6
x

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

f(x
)

Fourier Series Approximation with N = 1000

Original Function
Fourier Series Approximation

31

Part 3:

The Discrete Fourier Transform

32

Fourier transform

For a given function 𝑓(𝑥) the Fourier transform is

𝐹 𝜔 =
1
2𝜋

2
'%

%

𝑓(𝑥)𝑒)*+ 𝑑𝑥

The Fourier transform converts the signal 𝑓(𝑥) to its transform 𝐹(𝜔).

And then the inverse Fourier transform

𝑓 𝑥 =
1
2𝜋

2
'%

%

𝐹(𝜔)𝑒')*+ 𝑑𝜔

33

33

The Discrete Fourier Transform (DFT)

• If 𝑓(𝑡) or 𝐹(𝜔) is known analytically, the integrals can be evaluated
either analytically or numerically by the numerical integration
techniques.

• In practice, the signal 𝑓(𝑡) is measured at just a finite number 𝑁 of
times 𝑡, and these are all we have as input to approximate the
transform.

• The resultant discrete Fourier transform is an approximation both
because the signal is not known for all times, and because we must
integrate numerically.

• Once we have a discrete set of (approximate) transform values, they
can be used to reconstruct the signal for any value of the time.

• In this way, the DFT can be thought of as a technique for
interpolating, compressing, and extrapolating the signal.

34

34

DFT: Discrete times

We assume that the signal 𝑓(𝑡)	is sampled at (𝑁	 + 	1)	discrete times
(𝑁 time intervals), with a constant spacing Δ𝑡	 = 	ℎ	between times:

𝑓& ≡ 𝑓 𝑡& , 𝑘 = 0, 1, 2, … 𝑁

𝑡& ≡ 𝑘ℎ, 	 ℎ = ∆𝑡

In other words, we measure the signal 𝑓(𝑡)	once every ℎ-th of a second
for a total time of 𝑇. This correspondingly define the signal’s period 𝑇
and the sampling rate 𝑠:

𝑇 ≡ 𝑁ℎ, 𝑠 =
𝑁
𝑇
=
1
ℎ
.

Regardless of the true periodicity of the signal, when we choose a
period 𝑇 over which to sample the signal, the mathematics will
inevitably produce a 𝑓(𝑡) that is periodic with period 𝑇, 𝑦 𝑡 + 𝑇 = 𝑦 𝑡

Attention: Since the DFT assumes periodic repetition, truncating signals
can lead to leakage (spread of energy across frequencies). 35

35

DFT: frequencies and the period

If we are analyzing a truly periodic function, then the 𝑁 points should span
one complete period, but not more. This guarantees their independence.

Unless we make further assumptions, the 𝑁 independent data 𝑓(𝑡&)	can
determine no more than 𝑁 independent transform values
𝐹(𝜔&) 𝑘	 = 	0, … 	 , 𝑁	.

The time interval 𝑇 (which should be the period for periodic functions) is
the largest time over which we measure the variation of 𝑓(𝑡).
Consequently, it determines the lowest frequency contained in our Fourier
representation of 𝑓(𝑡),

𝜔$ =
2𝜋
𝑇
.

The full range of frequencies in the spectrum 𝜔" are determined by the
number of samples taken, and by the total sampling time 𝑇 = 𝑁ℎ	as

𝜔" = 𝑛𝜔$ = 𝑛
2𝜋
𝑁ℎ

, 	 𝑛 = 0, 1, … , 𝑁 36

36

7

DFT: Two basic ideas

The discrete Fourier transform (DFT) algorithm follows from two
approximations.
First, we evaluate the integral from time 0 to time 𝑇, over which the signal
is measured, and not from −∞ to +∞.

Second, the trapezoid rule is used for the integration

𝐹(𝜔") ≈
1
2𝜋

%
&#$

"

ℎ𝑓 𝑡& 𝑒')*-./ =
1
2𝜋

ℎ%
&#$

"

𝑓 𝑡& 𝑒'
),(&"
0

then

𝑓 𝑡 ≈
1
2𝜋

%
"#$

0
2𝜋
𝑁ℎ

𝐹(𝜔")𝑒)*-.

Trapezoid approximation:

2
1

2

𝑓 𝑥 𝑑𝑥 ≈
1
2
Δ𝑥 𝑓! + 2𝑓$ + 2𝑓, + ⋯+ 2𝑓"'$ + 𝑓" 37

37

Example

f = 1; % Fundamental frequency of the sawtooth wave (Hz)
Fs = 20; % Sampling frequency (Hz)

38

38

DFT: smoother frequency spectrum

We see from

 𝜔" = 𝑛𝜔$ = 𝑛 ,(

03

that the larger we make the time 𝑇 = 𝑁ℎ	over which we sample the
function, the smaller will be the frequency steps or resolution.
Accordingly, if you want a smooth frequency spectrum, you need to have a
small frequency step 2𝜋 ∕ 𝑇, which means a longer observation time 𝑇.
While the best approach would be to measure the input signal for all times,
in practice a measured signal 𝑓(𝑡) is often extended in time (“padded”) by
adding zeros for times beyond the last measured signal, which thereby
increases the value of T artificially.

Although this does not add new information to the analysis, it does build in
the experimentalist’s view that the signal has no existence, or no meaning,
at times after the measurements are stopped.

39

39

Example

f = 1; % Fundamental frequency of the sawtooth wave (Hz)
Fs = 100; % Sampling frequency (Hz)

40

40

DFT: problem with periodicity

Periodicity is expected for a Fourier series.

However, if we input values of the signal for longer lengths of time, then
the inherent period becomes longer, and if the repeat period 𝑇 is very long,
it may be of little consequence for times short compared to the period.

If 𝑓(𝑡) is actually periodic with period 𝑁ℎ, then the DFT is an excellent way
of obtaining Fourier series.

If the input function is not periodic, then the DFT can be a bad
approximation near the endpoints of the time interval (after which the
function will repeat) or, correspondingly, for the lowest frequencies.

41

41

Spectral leakage I

Suppose we have a signal 𝑦 𝑡 = cos(2𝜋𝑓!𝑡) with frequency 𝑓! = 5 Hz (or
the period of oscillations is 𝑇 = 0.2. Here 𝑇𝑖𝑚𝑒 = 2𝑇. NO leakage

42

42

8

Spectral leakage II

the period of oscillations is 𝑇 = 0.2. Here 𝑇𝑖𝑚𝑒 = 2.2𝑇. Leakage

43

43

Spectral leakage III

the period of oscillations is 𝑇 = 0.2. Here 𝑇𝑖𝑚𝑒 = 2.5𝑇. Leakage even more

44

44

Spectral leakage IV

the period of oscillations is 𝑇 = 0.2. Here 𝑇𝑖𝑚𝑒 = 5.5𝑇. Still leakage

45

45

Spectral leakage V

the period of oscillations is 𝑇 = 0.2. Here 𝑇𝑖𝑚𝑒 = 0.8𝑇. Leakage again

46

46

DFT: example

Analyze the signal

𝑓 𝑡 = 3 cos 𝜔𝑡 + 2 cos 3𝜔𝑡 + cos 5𝜔𝑡

Let’s set 𝑓! = 5, 𝐹4 = 100 (sampling frequency), 𝑇 = 1/𝐹4 (sampling
period), 𝐿 = 100 (length of the signal)

47

47

DFT: another example

Analyze the signal

𝑓 𝑡 = 5 sin 𝜔𝑡 + 2 cos 3𝜔𝑡 + sin 5𝜔𝑡

Let’s set 𝑓! = 5, 𝐹4 = 100 (sampling frequency), 𝑇 = 1/𝐹4 (sampling
period), 𝐿 = 100 (length of the signal)

48

48

9

DFT: Compact form

The DFT and its inverse can be written in a concise and insightful way,
and be evaluated efficiently, by introducing a complex variable 𝑍 for the
exponential and then raising 𝑍 to various powers:

𝐹" =
1
2𝜋

%
&#$

0

𝑍"&𝑓& , 𝑍 = 𝑒',()/0 , 	 𝑍"& ≡ 𝑍 " &

𝑓& =
2𝜋
𝑁

%
"#$

0

𝑍'"&𝐹" ,	

With this formulation, the computer needs to compute only powers of 𝑍.

49

49

DFT: Without working with complex numbers

If your preference is to avoid complex numbers, we can rewrite DFT in
terms of separate real and imaginary parts by applying Euler’s
theorem with 𝜃 = 2𝜋 ∕ 𝑁	

𝑍 = 𝑒')6 , 	 Z±"& = e∓)"&9 = cos 𝑛𝑘𝜗 ∓ 𝑖 sin(𝑛𝑘𝜗)

𝐹& =
1
2𝜋

&
&#$

0

cos 𝑛𝑘𝜗 𝑅𝑒	𝑓& + sin 𝑛𝑘𝜗 𝐼𝑚	𝑓& + 𝑖 cos 𝑛𝑘𝜗 𝐼𝑚	𝑓& − sin 𝑛𝑘𝜗 	𝑅𝑒	𝑓&

Readers new to DFTs are often surprised when they apply these
equations to practical situations and end up with transforms 𝐹& having
imaginary parts, despite the fact that the signal 𝑓 is real.

A real signal (𝐼𝑚	𝑓& 	 ≡ 	0) will yield an imaginary transform unless
∑&#$
0 sin 𝑛𝑘𝜗 	𝑅𝑒	𝑓& = 0. This occurs only if 𝑓(𝑡)	is an even function

and we integrate exactly. Because neither condition holds, the DFTs
of real, even functions may have small imaginary parts. This is a good
measure of the approximation error in the entire procedure. 50

50

DFT: Aliasing

The sampling of a signal by DFT for only a finite number of times (large Δ𝑡)
limits the accuracy of the deduced high-frequency components present in
the signal.

Clearly, good information about very high frequencies requires sampling
the signal with small time steps so that all the wiggles can be included.

While a poor deduction of the high-frequency components may be
tolerable if all we care about are the low-frequency components, the
inaccurate high-frequency components remain present in the signal and
may contaminate the low-frequency components that we deduce.

This effect is called aliasing and is the cause of the Moiré pattern distortion
in digital images.

51

51

DFT: Aliasing: example

As an example, consider the two functions sin(𝜋𝑡 ∕ 2)	and sin(2𝜋𝑡)	for 0	 ≤
	𝑡	 ≤ 	8, with their points of overlap in bold

If we were to sample a signal containing these functions at the times
t = 0, 2, 4, 6, 8, then we would measure 𝑓	 ≡ 	0	and assume that there was
no signal at all.

52

52

DFT: Aliasing: example

As an example, consider the two functions sin(𝜋𝑡 ∕ 2)	and sin(2𝜋𝑡)	for 0	 ≤
	𝑡	 ≤ 	8, with their points of overlap in bold

However, if we were to measure the signal at the filled dots where
sin (πt∕2) = sin(2πt), then our Fourier analysis would completely miss the
high-frequency component. In

DFT jargon, we would say that the high-frequency component has been
aliased by the low-frequency component 53

53

DFT: Aliasing (more)

In other cases, some high-frequency values may be included in our
sampling of the signal, but our sampling rate may not be high enough to
include enough of them to separate the high-frequency component
properly.

In this case some high-frequency signals would be included spuriously as
part of the low-frequency spectrum, and this would lead to spurious low-
frequency oscillations when the signal is synthesized from its Fourier
components.

More precisely, aliasing occurs when a signal containing frequency 𝑓 that
is sampled at a rate of 𝑠	 = 	𝑁 ∕ 𝑇	measurements per unit time, with
 𝑠 ≤ 𝑓 ∕ 2. In this case, the frequencies 𝑓 and 𝑓	 − 	2𝑠	yield the same DFT,
and we would not be able to determine that there are two frequencies
present

54

54

10

DFT: Nyquist criterion

To avoid aliasing we want NO frequencies 𝑓	 > 	𝑠 ∕ 2	to be present in our
input signal. This is known as the Nyquist criterion.

Although filtering eliminates some high-frequency information, it lessens
the distortion of the low-frequency components, and so may lead to
improved reproduction of the signal.

If accurate values for the high frequencies are required, then we will need
to increase the sampling rate s by increasing the number 𝑁	of samples
taken within the fixed sampling time 𝑇	 = 	𝑁	ℎ

If we increase the total time sampling time 𝑇	 = 	𝑁	ℎ	and keep ℎ the same,
then the sampling rate 𝑠	 = 	𝑁 ∕ 𝑇	 = 	1 ∕ ℎ	remains the same. Because
𝜔$ = 2𝜋 ∕ 𝑇, this makes 𝜔$ smaller, which means we have more low
frequencies recorded and a smoother frequency spectrum.

55

55

Nyquist Sampling Theorem

The Nyquist theorem states that a continuous signal must be sampled at
least twice its highest frequency component to avoid aliasing. If the
signal's highest frequency is 𝑓:1+ , the sampling frequency 𝑓4 	must satisfy:

𝑓4 ≥ 2𝑓:1+

If this condition is not met, aliasing will occur, leading to distortion in the
frequency spectrum.

56

56

Nyquist Sampling Theorem (example)

In this example, we create a high-frequency sine wave, sample it at a
frequency below the Nyquist rate, and use the DFT to observe the effect of
aliasing in the frequency domain.

Due to sampling
below the Nyquist
rate, the 15 Hz
component "folds"
down to 5 Hz
in the spectrum.

57

57

Part 4:

Fast Fourier Transform

58

DFT challenge

The DFT

𝐹" =
1
2𝜋

%
&#$

0

𝑍"&𝑓& , 𝑍 = 𝑒',()/0 , 	 n = 0, 1, … N − 1

Even if the signal elements 𝑓& to be transformed are real, 𝑍 is complex,
and therefore we must process both real and imaginary parts when
computing transforms.

Because both 𝑛 and 𝑘 range over 𝑁 integer values, the
𝑍"&𝑓& 	multiplications require some 𝑁, multiplications and additions of
complex numbers.

As 𝑁 gets large, as happens in realistic applications, this geometric
increase in the number of steps leads to long computation times.

59

59

FFT: history

• First step: Carl Friedrich Gauss's unpublished 1805 work on the orbits
of asteroids Pallas and Juno.

• Next step: Joseph Fourier in 1822 (without analyzing complexity)
• pre-computer era: Danielson and Lanczos , 1942

• Need for speed: Cooley and Tukey, 1965 (they got the most credit)
FFT reduces the number of operations necessary to perform a DFT from
𝑁, to roughly 𝑁	log2	𝑁

 𝑁		 𝑁, 	 𝑁	log2	𝑁
 10 100 33
 100 10,000 664
 1000 1000,000 9,965 hundred times faster
for 10,000 – almost 1000 times faster
Because of its widespread use (including cell phones), the fast Fourier
transform algorithm is considered one of the 10 most important algorithms
of all time. 60

60

11

Top 10 most important algorithms

1946: The Metropolis Algorithm

1947: Simplex Method

1950: Krylov Subspace Method

1951: The Decompositional Approach to Matrix Computations

1957: The Fortran Optimizing Compiler

1959: QR Algorithm

1962: Quicksort

1965: Fast Fourier Transform

1977: Integer Relation Detection

1987: Fast Multipole Method

61

61

The idea behind the FFT

The idea behind the FFT is to utilize the periodicity inherent in the
definition of the DFT

𝐹" =
1
2𝜋

%
&#$

0

𝑍"&𝑓& , 𝑍 = 𝑒',()/0 , 	 n = 0, 1, … N − 1

to reduce the total number of computational steps.

Essentially, the algorithm divides the input data into two equal groups and
transforms only one group, which requires ∼ ⁄𝑁 2 , 	multiplications.

It then divides the remaining (nontransformed) group of data in half and
transforms them, continuing the process until all the data have been
transformed.

The total number of multiplications required with this approach is
approximately 𝑁	log2	𝑁.

62

62

More specific

Let’s change notations (for the sake of saving time)

𝑌" =
1

2𝜋
%
&#$

0

𝑍"&𝑦& , 𝑍 = 𝑒',()/0 , 	 n = 0, 1, … N − 1

Specifically, the FFT’s time economy arises from the computationally
expensive complex factor 𝑍"& ≡ 𝑍 " & 	having values that are repeated
as the integers 𝑛 and 𝑘 vary sequentially.

63

63

More specific

For instance, for 𝑁 = 	8,

where we include 𝑍! 	(≡ 	1)	for clarity.

64

64

More specific (cont.)

When we actually evaluate these powers of 𝑍, we find only four
independent values:

65

65

More specific (cont.)

When substituted into the definitions of the transforms, we obtain

66

66

12

More specific (cont.)

We see that these transforms now require 8 × 8 = 64 multiplications of
com- plex numbers, in addition to some less time-consuming additions.
We place these equations in an appropriate form for computing by
regrouping the terms into sums and differences of the 𝑦’s:

(see next slide)

67

67

More specific (cont.)

…

68

68

More specific (cont.)

Note the repeating factors inside the parentheses, with combinations of
the form 𝑦; 	± 	𝑦< . These symmetries are systematized by introducing the
butterfly operation

This operation takes the 𝑦; and 𝑦< data elements from the left wing and
converts them to the 𝑦; 	+ 	𝑍𝑦< 	elements in the right wings.

We apply the butterfly operations to an entire FFT process, specifically to
the pairs (𝑦! , 𝑦=), (𝑦$, 𝑦>), (𝑦, , 𝑦?), and (𝑦@ , 𝑦A). 69

69

More specific (cont.)

Note how the number of multiplications of complex numbers has been
reduced:

For the first butterfly operation there are 8 multiplications by 𝑍! ; for the
second butterfly operation there are 8 multiplications, and so forth, until a
total of 24 multiplications are made in four butterflies.

In contrast, 64 multiplications are required in the original DFT

70

70

More specific (cont.)

The butterfly operations performing a FFT on the eight data on the left
leading to eight transforms on the right. The transforms are different linear
combinations of the input data.

71

71

More specific (cont.)

A modified FFT in which the eight input data on the left are transformed
into eight transforms on the right. The results are the same as in the
previous figure, but now the output transforms are in numerical order

72

72

13

FFT - implementations

There are very many programs written in many languages for doing FFT

Check what is available for you!!!

73

73

Part 4b:

Filtering noisy signals

74

Filtering noisy signals (basics)

Filtering noisy signals is a common problem in signal processing.

Noise can distort a signal, making it challenging to interpret or analyze.

Filtering helps to reduce unwanted noise while preserving the important
features of the signal.

Types of Noise:

• Random (white noise),

• Periodic (e.g., hum from power lines), or

• Structured (e.g., interference from other signals).

75

75

Types of Filters

• Low-Pass Filter:
Allows low-frequency components to pass while attenuating high-
frequency noise.

• High-Pass Filter:
Allows high-frequency components to pass, useful for removing low-
frequency trends.

• Band-Pass Filter:
Allows a specific range of frequencies to pass, rejecting frequencies
outside this range.

• Notch Filter:
Removes specific frequencies, useful for removing periodic
interference.

76

76

Common Filtering Techniques

A. Fourier Transform Filtering

• Use FFT to transform the signal into the frequency domain.
• Remove unwanted frequency components by setting their values to

zero.

• Apply the inverse FFT to get the filtered signal.
B. Digital Filtering

• Use designed digital filters (like Butterworth, Chebyshev, or FIR filters)
to remove specific frequencies directly in the time domain.

C. Moving Average Filter

• Simple and effective for removing high-frequency noise by averaging
neighboring points.

D. Wavelet Denoising

• Wavelet transforms are useful for decomposing a signal into various
frequency bands and selectively removing noise.

77

77

Example – using FFT

A signal containing a 50 Hz sinusoid of amplitude 0.7 and a 120 Hz
sinusoid of amplitude 1.

𝑆	 = 	0.7sin(2𝜋 ∗ 50 ∗ 𝑡) 	+ 	sin(2𝜋 ∗ 120 ∗ 𝑡)

and Corrupt the signal with zero-mean white noise with a variance of 4.

𝑋	 = 	𝑆	 + 	2 ∗ 𝑟𝑎𝑛𝑑𝑛(𝑠𝑖𝑧𝑒(𝑡))

78

78

14

After using FFT

After applying FFT

 if there was no noise

79

79

Example – Fourier Transform Filtering (Low-Pass)

FFT-based low-pass filter to remove high-frequency noise.
FFT - Good for known frequency components.

80

80

Example – Butterworth Low-Pass Filter

Using a Butterworth filter to remove high-frequency noise.
Smooth filtering for general use; commonly used.

81

81

Example – Moving Average Filter

A moving average filter smooths the signal by averaging points.
Simple, effective for reducing high-frequency noise.

82

82

Example – Wavelet Denoising

Wavelet denoising can remove noise while preserving sharp changes
Effective for signals with transient events or non-stationary noise.

83

83

All four:
same slide

84

84

